

目次

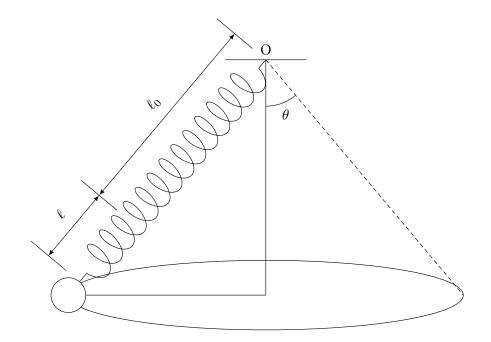
問題					•		•			•	•	 •	•	•					•			 	•		•						3
略解	•	ヒ	:)	/	\]	11
解答]	15

1	質量を無視できるばねの一端を O に固定して、もう一方の橋に大きさを無視できるおもりをつる
して	vる. おもりの質量は m である. また, ばねは自然長が ℓ_0 であり, ばね定数は k である. 図のよう
にお	らりを等速円運動させたところ,おもりは速さ v で,ばねの伸びは ℓ であった.重力加速度の大きさ
εg	として,以下の (ア) ~ (ケ) に適切な式を入れよ.

- (1) 鉛直線とばねのなす角度を θ として、おもりについての運動方程式を考える。水平方向の運動方程式は (r) となる。鉛直方向は力がつり合うので、運動方程式は (r) となる。また、これらの結果から $\tan\theta\sin\theta=$ (r) となる。
- (2) つぎに、おもりの質量を少し変化させて Δm とし、角度 θ が変わらないようにおもりの速さ v を Δv だけ変化させたところ、ばねの伸びが $\Delta \ell$ だけ変化した.このときの運動方程式の式を考える.水平方向の運動方程式の式は (x) となり、鉛直方向の運動方程式は (x) となる.また、これらの結果から $\tan \theta \sin \theta = (b)$ となる.

このとき、おもりの速さの変化量 Δv によって生じるばねの伸びの変化量 $\Delta \ell$ を知りたい.まず、 θ が変化しないことから (\dot{p}) と (\dot{p}) が等しくなる.この関係を用いて Δv と $\Delta \ell$ の関係を求める.v に比べて $(\Delta v)^2$ は十分小さいものとし、 $(\Delta v)^2 = 0$ として近似式を求めると, $\Delta \ell$ と Δv の関係は $\Delta \ell = (\dot{r})$ × Δv となり, $\Delta \ell$ は, ℓ_0 , ℓ , ℓ および Δv で表すことができる.

(3) おもりの質量の変化量 Δm に対して Δv を求めたい。まず, (イ) と (オ) から, $\Delta \ell$ を ℓ ,m および Δm を用いて表すと, $\Delta \ell =$ (ク) $\times \Delta m$ となる。以上の結果を用いて Δv と Δm の関係を求めると, $\Delta \ell =$ (ケ) $\times \Delta m$ となり, ℓ_0 , ℓ , m, v および Δm がわかれば, Δv を 求めることができる.



2009 年鳥取大より. 物体とともに動く座標系で考える誘導を, 地面固定座標系で考えるような誘導に変更した.

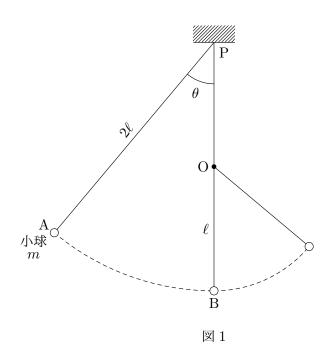
6 第 4 回 補講

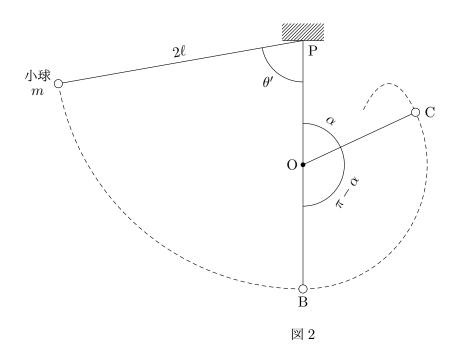
2 図 1 のように、質量 m の小球をつけた長さ 2ℓ の軽い糸の端を点 P に固定する.糸がたるまないように鉛直下方から角度 θ ($0 < \theta < \frac{\pi}{2}$) になる点 A まで小球を持ち上げたのち静かにはなし、鉛直面内で小球を運動させる.小球が最下点 B を通る瞬間に、点 B から距離 ℓ だけ真上の点 O にある細い釘の位置を中心とする円運動に変わった.重力加速度の大きさを g とし、糸の伸び縮みおよび空気抵抗を無視して以下の問いに答えよ.

- 問1 点 A で小球を静かにはなした瞬間における糸の張力の大きさを求めよ.
- 問2 小球が点 B を通るときの速さ $v_{\rm B}$ を求めよ.
- 問3 小球が点 B を通る直前での糸の張力の大きさを求めよ.
- 問4 小球が点 B を通った直後での糸の張力の大きさを求めよ.
- 問5 糸がたるむことなく小球が運動を続けるときの角度 θ の最大値を求めよ.

図 2 のように,糸の角度をある角度 θ' $(0<\theta<\frac{\pi}{2})$ にして小球を静かにはなす.小球が点 B を通ったのち,鉛直下方に対し糸の角度が $\pi-\alpha$ $(0<\alpha<\frac{\pi}{2})$ である点 C を通過した瞬間から糸がたるみはじめた.

- 問6 点 C における小球の速さ v_C を, α を含まない形で表せ.
- 問7 小球が点 C から最高点へ達したのち、点 O にある細い釘に衝突するときの $\tan \alpha$ を求めよ.



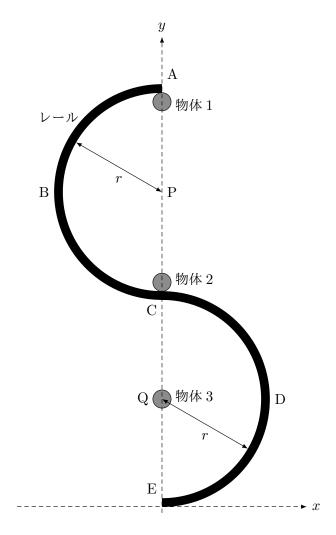


3 図に示すように、鉛直面内に点 P を中心とする半径 r の半円弧 ABC と、点 Q を中心とする半径 r の半円弧 CDE からなる絶縁体でできたレールが固定されている。点 A, P, C, Q, E を結ぶ直線は水 平面に対して垂直である。絶縁体でできた質量 M の物体 1 に、点 A で水平左向きに初速度を与えて運動 させる。また、点 C には正の電荷 q をもつ質量 m (< M) の帯電した物体 2 が置かれている。さらに、点 Q には電荷 -q をもつ帯電した物体 3 が固定されている。重力加速度の大きさを g, 静電気力に関する クーロンの法則の比例定数を k として、以下の問いに答えよ。なお、物体 1、物体 2、物体 3 の大きさや、レールの厚さ、レールと物体 1 や物体 2 との間の摩擦は無視できるものとする。

(1) 物体 1 がレールから離れることなく点 A から点 C に達するための,点 A で物体 1 に与える初速 度の大きさの最小値を求めよ.

以下の問いについては、点 A で物体 1 に (1) の初速度を与える場合を考える.

- (2) 点 C で物体 1 が物体 2 と完全弾性衝突した. 衝突直前の物体 1 の速さ, 衝突直後の物体 1 および物体 2 の速さを求めよ.
- (3) 物体1と物体2の衝突直後,物体1はレールと接触することなく落下していった.
 - (a) 水平方向の位置 x, M, m, r を用いて,衝突以降の物体 1 の鉛直方向の位置 y を求めよ. なお,点 E を x-y 座標の原点とする.
 - (b) 衝突後,物体 1 をレールに接触させないようにするための物体 2 の質量に関する条件を示せ.
- (4) 物体 1 と物体 2 の衝突後, 物体 2 はレールから離れることなく点 E に達した. このときの電荷 q の最小値を求めよ.



12 第4回 補講

■略解

1

$$(1) \quad \mathcal{T} : m \frac{v^2}{(\ell_0 + \ell)} \sin \theta = k\ell \sin \theta$$

$$\mathcal{A} : 0 = k\ell \cos \theta - mg \quad \dot{\mathcal{T}} : \frac{v^2}{g(\ell_0 + \ell)}$$

$$\mathbf{I} : m \frac{(v + \Delta v)^2}{(\ell_0 + \ell + \Delta \ell)} \sin \theta = k(\ell + \Delta \ell) \sin \theta$$

$$\dot{\mathcal{T}} : 0 = k(\ell + \Delta \ell) \cos \theta - (m + \Delta m)g$$

$$\dot{\mathcal{T}} : \frac{(v + \Delta v)^2}{g(\ell_0 + \ell + \Delta \ell)}$$

$$\dot{\mathcal{T}} : \frac{2(\ell + \ell_0)}{v} \quad \dot{\mathcal{T}} : \frac{\ell}{m} \quad \dot{\mathcal{T}} : \frac{v\ell}{2m(\ell + \ell_0)}$$

2

問1
$$mg\cos\theta$$
 問2 $2\sqrt{g\ell(1-\cos\theta)}$

問3
$$mg(3-2\cos\theta)$$
 問4 $mg(5-4\cos\theta)$

問5
$$\frac{\pi}{3}$$
 問6 $\sqrt{g\ell\left(\frac{1}{2}-\cos\theta'\right)}$ 問7 $\sqrt{2}$

3

(1)
$$\sqrt{gr}$$

(2) 物体 1 直前:
$$\sqrt{5gr}$$
,

物体 1 直後:
$$\frac{M-m}{M+m}\sqrt{5gr}$$
, 物体 2 直後: $\frac{2M}{M+m}\sqrt{5gr}$

物体 2 直後:
$$\frac{2M}{M+m}\sqrt{5gr}$$

(3) (a)
$$y = 2r - \frac{1}{10} \left\{ \frac{M+m}{M-m} \right\}^2 \frac{x^2}{r}$$

(b)
$$m < \frac{3 - \sqrt{5}}{2}M$$

$$(4) r\sqrt{\frac{5mg}{k}\left\{1+\left(\frac{2M}{M+m}\right)^2\right\}}$$

略解・ヒント 13

■ヒント

・等速円運動の定石は以下の通り.

・非等速円運動の定石は以下の通り.

以下ヒントのない問題は全て上記の定石通り.

2

問7 時間追跡で考える. 水平左方向に $\ell\sin\theta$ 変位するのに要した時間と、鉛直下方向に $\ell\cos\theta$ 変位 するのに要した時間が等しければ原点 O を通過する. 軌跡の方程式が原点 O を通過するとしても同じ.

3

(2) ・衝突は,以下の2式を連立.

衝突の直前直後の運動量保存則 衝突の条件

16 第 2 回 補講

│ 1 │ 等速円運動,近似計算

(1) 運動方程式より,

$$\begin{cases} m \frac{v^2}{(\ell_0 + \ell)} \sin \theta = k\ell \sin \theta \\ 0 = k\ell \cos \theta - mg \\ 0 = k\ell \cos \theta - mg \end{cases}, \quad \therefore \tan \theta \sin \theta = \frac{v^2}{g(\ell_0 + \ell)}.$$

(2) 運動方程式より,

$$\begin{cases} m \frac{(v + \Delta v)^2}{(\ell_0 + \ell + \Delta \ell)} \sin \theta = k(\ell + \Delta \ell) \sin \theta \\ 0 = k(\ell + \Delta \ell) \cos \theta - (m + \Delta m)g \\ 0 = k(\ell + \Delta \ell$$

ここで, (ウ), (カ) より,

$$\begin{split} \frac{v^2}{g(\ell_0 + \ell)} &= \frac{(v + \Delta v)^2}{g(\ell_0 + \ell + \Delta \ell)} \\ 1 &+ \frac{\Delta \ell}{\ell_0 + \ell} = \left(1 + \frac{\Delta v}{v}\right)^2 \coloneqq 1 + 2\frac{\Delta v}{v} \,, \qquad \therefore \Delta \ell = \frac{2(\ell + \ell_0)}{v} \times \Delta v \,. \end{split}$$

(3) (イ), (オ) より,

$$\begin{cases} 0 = k\ell \cos \theta - mg, \\ 0 = k(\ell + \Delta \ell) \cos \theta - (m + \Delta m)g, \end{cases} \therefore \Delta \ell = \frac{\ell}{m} \times \Delta m.$$

よって, (キ), (ク) より,

$$\frac{2(\ell+\ell_0)}{v} \Delta v = \frac{\ell}{m} \Delta m \,, \qquad \therefore \Delta v = \underbrace{\frac{v\ell}{2m(\ell+\ell_0)}}_{(r)} \times \Delta m \,.$$

【参考】微分方程式を解いてみる(立てただけではもったいない気がするので)

問題文で得た微分方程式を解き、vのm依存性を調べてみる *1*2 .

$$\begin{cases} \frac{d\ell}{dy} = \frac{2(\ell + \ell_0)}{v}, \\ \frac{dv}{dm} = \frac{v\ell}{2m(\ell + \ell_0)}. \end{cases}$$

$$\begin{cases} \frac{d\ell}{dv} = \frac{2(\ell + \ell_0)}{v}, \\ \frac{d\ell}{dm} = \frac{\ell}{m}. \end{cases}$$

 $^{^{*1}}$ 文字は混乱を避けるために、始状態での質量、速さ、ばねの長さをそれぞれ m^* 、 v^* 、 ℓ^* とする.

^{*2} 上記の微分方程式を解くより、以下の 2 つの組を解く方が計算量は少ない.

まず、上の式の変数を分離し、両辺をvで積分して、

$$\int_{\ell^*}^{\ell} \frac{1}{\ell + \ell_0} d\ell = \int_{v^*}^{v} \frac{2}{v} dv$$

$$\log \left| \frac{\ell + \ell_0}{\ell^* + \ell_0} \right| = \log \left(\frac{v}{v^*} \right)^2$$

$$\therefore \ell = -\ell_0 + (\ell^* + \ell_0) \left(\frac{v}{v^*} \right)^2.$$

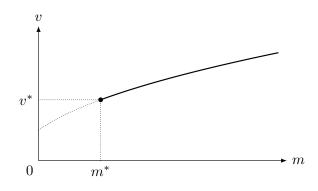
これを下の式に代入して,

$$\frac{dv}{dm} = \frac{v\ell}{2m(\ell + \ell_0)} = \frac{1}{2mv} \left(v^2 - \frac{\ell_0}{\ell^* + \ell_0} v^{*2} \right).$$

ここで, $\alpha^2=rac{\ell_0}{\ell^*+\ell_0}$ として,変数を分離し,両辺 m で積分して,

$$\int_{v^*}^{v} dv \left(\frac{1}{v - \alpha v^*} + \frac{1}{v + \alpha v^*} \right) = \int_{m^*}^{m} \frac{dm}{m}$$
$$\log \left| \frac{v^2 - (\alpha v^*)^2}{(1 - \alpha^2)v^{*2}} \right| = \log \left| \frac{m}{m^*} \right|$$
$$\therefore v = v^* \sqrt{\frac{\ell^*}{\ell^* + \ell_0} \left(\frac{\ell_0}{\ell^*} + \frac{m}{m^*} \right)}.$$

グラフは以下のようになる.



2 非等速円運動 - 糸, 等加速度運動の時間追跡

問1 運動方程式(中心成分)より,

$$m\frac{0^2}{2\ell} = T - mg\cos\theta$$
, $\therefore T = mg\cos\theta$.

問2 運動方程式(中心成分), および力学的エネルギー保存則より,

$$\begin{cases} m \frac{v_{\rm B}^2}{2\ell} = T - mg\cos 0, \\ \frac{1}{2} m v_{\rm B}^2 - 2mg\ell\cos 0 = \frac{1}{2} m \cdot 0^2 - 2mg\ell\cos \theta, \\ \therefore v = \sqrt{2g\ell(1 - \cos \theta)}, \quad T = mg(3 - 2\cos \theta). \end{cases}$$

問3 問2に示した.

問4 運動方程式(中心成分), および力学的エネルギー保存則より,

$$\begin{cases} m\frac{v^2}{\ell} = T - mg\cos 0, \\ \frac{1}{2}mv^2 - 2mg\ell\cos 0 = \frac{1}{2}m\cdot 0^2 - 2mg\ell\cos\theta, \\ \therefore v = \sqrt{2g\ell(1-\cos\theta)}, \quad T = mg(5-4\cos\theta). \end{cases}$$

問5 小球が点 〇 の高さを超えなければよいので、力学的エネルギー保存則より、

$$\frac{1}{2}mv^2 - mg\ell = \frac{1}{2}m \cdot 0^2 - 2mg\ell \cos \theta$$

$$\therefore \frac{1}{2}mv^2 = mg\ell - 2mg\ell \cos \theta \le 0$$

$$\cos \theta \ge \frac{1}{2}, \qquad \therefore \max\{\theta\} = \frac{\pi}{3}.$$

問6 Cで糸が弛むことを考慮して、運動方程式(中心成分)、および力学的エネルギー保存則より、

$$\begin{cases} m \frac{v_{\text{C}}^2}{\ell} = 0 - mg \cos(\pi - \alpha), \\ \frac{1}{2} m v_{\text{C}}^2 - mg \ell \{\cos(\pi - \alpha) + 1\} = \frac{1}{2} m \cdot 0^2 - 2mg \ell \cos \theta', \\ \therefore \cos \theta' = \frac{1}{2} - \cos \alpha, \quad v_{\text{C}} = \sqrt{g \ell \cos \alpha} = \sqrt{g \ell \left(\frac{1}{2} - \cos \theta'\right)}. \end{cases}$$

問7 糸が弛んだ瞬間の水平方向の速度成分は $v_{\rm C}\cos\alpha$, 鉛直方向の速度成分は $v_{\rm C}\sin\alpha$ であり、水平左向きに $\ell\sin\alpha$ 変位する時間と鉛直下向きに $\ell\cos\theta$ 変位する時間が等しければ点 O を通過する. 水平左向きに x 軸を、鉛直上向きに y 軸を定め、その原点を点 O とし、小球の位置を (x,y) とす

る. 糸がたるんでからの小球の位置は,

$$\begin{cases} x = -\ell \sin \alpha + v_{\rm C} \cos \alpha t, \\ y = \ell \cos \alpha + v_{\rm C} \sin \alpha t - \frac{1}{2} g t^2. \end{cases}$$

x=0, y=0 を満たす時刻 t が等しいときを考えて*3,

$$0 = \ell \cos \alpha + v_{\rm C} \sin \alpha \frac{\ell}{v_{\rm C}} \tan \theta - \frac{1}{2} g \left(\frac{\ell}{v_{\rm C}} \tan \theta \right)^2$$
$$0 = \cos \alpha + \sin \alpha \tan \alpha - \frac{\tan^2 \alpha}{2 \cos \alpha}$$

 $\therefore \tan \alpha = \sqrt{2} \,.$

 $^{^{*3}}$ x の式から $t=rac{\ell}{v_{
m C}} an heta$ を求め,y の式へ代入した.

20 第 2 回 補講

3 非等速円運動一面,衝突

(1) 運動方程式(中心成分)より,

$$M\frac{V^2}{r} = N + Mg$$

$$N = M\frac{V^2}{r} - Mg > 0, \qquad \therefore V > \sqrt{gr}.$$

(2) 運力学的エネルギー保存則より,

$$\frac{1}{2}MV_0^2 + Mg \cdot 0 = \frac{1}{2}M(\sqrt{gr})^2 + Mg \cdot 2r, \quad \therefore V_0 = \sqrt{5gr}.$$

また, 衝突の直前・直後の運動量保存則, および問題文の条件(弾性衝突)より,

$$\begin{cases} MV + mv = MV_0 + m \cdot 0, \\ V - v = -(V_0 - 0), \end{cases} \qquad \therefore V = \frac{M - m}{\underbrace{M + m}} \sqrt{5gr}, \quad v = \frac{2M}{\underbrace{M + m}} \sqrt{5gr}.$$

(3) (a) 点 C でレールから離れることから

$$\begin{cases} x = Vt, \\ y = 2r - \frac{1}{2}gt^2, \end{cases} \qquad \therefore y = 2r - \frac{1}{10}\left(\frac{M-m}{M+m}\right)^2 \frac{x^2}{r}.$$

(b) 運動方程式(中心成分)より,

$$M\frac{V^2}{r} = -N + Mg, \qquad \therefore N = -M\frac{V^2}{r} + Mg$$

よって,N < 0を考えて*4*5,

$$\begin{split} &\frac{1}{2}M\left(\frac{M-m}{M+m}\sqrt{5gr}\right)^2 \geq Mg\\ &4m^2-12Mm+4M^2 \leq 0\,, \qquad \therefore m \leq \frac{3-\sqrt{5}}{2}M\,. \end{split}$$

 $^{^{*4}}$ 離れていないならば N>0 ゆえ, $N\leq 0$ ならば離れている.等号成立については,有効数字のことを考えれば,本質的ではないことはわかってもらえるだろう.

 $^{^{*5}}$ $m>rac{3+\sqrt{5}}{2}M$ は、物体 1 が x 負の向きに運動してかつ(レールが下側に曲がっている円弧となっている場合に)レールから離れるような状況だが、レールは上側に円弧をとっているのでこの場合、物体 1 はレールから離れることはない.

(4) 物体 2 のある位置を R としたとき, $\angle CQR = \theta$ とすると,運動方程式(中心成分),および力学的エネルギー保存則より *6 ,

$$\begin{cases} m\frac{v^2}{r} = -N + mg\cos\theta + k\frac{q^2}{r^2}, \\ \frac{1}{2}mv^2 + mgr\cos\theta + k\frac{q(-q)}{r} = \frac{1}{2}m\left(\frac{2M}{M+m}\sqrt{5gr}\right)^2 + mgr + k\frac{q(-q)}{r}, \\ \therefore N = k\frac{q^2}{r^2} - 5mg\left\{\left(\frac{2M}{M+m}\right) - \frac{1}{5}(2 - 3\cos\theta)\right\}. \end{cases}$$

以上より、 $\theta=\pi$ で N が最小値を取ることがわかり、このときの N の値が 0 より大きければ物体 2 はレールから離れない.よって、

$$k\frac{q^2}{r^2} - 5mg\left\{\left(\frac{2M}{M+m}\right) - \frac{1}{5}(2 - 3\cos\theta)\right\} > 0,$$

$$\therefore q > r\sqrt{\frac{5mg}{k}\left\{1 + \left(\frac{2M}{M+m}\right)^2\right\}}.$$